

DEPARTMENT OF

COMPUTER SCIENCE
Te Tari Rorohiko

2025

Contributors

J. Turner

R. Mercado

V. Moxham-Bettridge

A. Hinze

C. Pilbrow

N. Kanji

T. Elphick

S. Cunningham

J. Kasmara

© 2025 University of Waikato. All rights reserved. No part of this book may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without prior consent of the Department of
Computer Science, University of Waikato.
The course material may be used only for the University’s educational purposes. It includes extracts of copyright
works copied under copyright licences. You may not copy or distribute any part of this material to any other person,
and may print from it only for your own use. You may not make a further copy for any other purpose. Failure to
comply with the terms of this warning may expose you to legal action for copyright infringement and/or disciplinary
action by the University.

 Au Reikura
School of Computing & Mathematical Sciences

 2

INTRODUCTION TO PROGRAMMING
__

Today we will have a very brief and quick introduction to common programming concepts to
ensure we are all on the same page. In all software there are three main programming structures
that are used, these are: sequences, selection and loops.

Sequence

Selection

Loops

Sequences

Programs are executed in sequential order, for example:

01 using System;
02
03 namespace Hellow
04 {
05 class MainClass
06 {
07 public static void Main(string[] args)
08 {
09 Console.WriteLine("Hello World!");
10 }
11 }
12 }

The 1st line of the program tells C# to use the System library. The 3rd line defines the
namespace for the program (Hellow). On line 5 a class called MainClass is created to store

 Au Reikura
School of Computing & Mathematical Sciences

 3

the code for this program. Line 7 creates what is called a function of the class, it contains a set of
code which is executed each time its name is called (in this case Main).

On line 7 we also introduce some keywords that you may not have seen before. The “public”

keyword means that this function is accessible from other classes. The “static” keyword

means that we can access the function without instantiating an object (a class is a blueprint for an
object, more on this later). The “void” keyword means that this function returns nothing,

sometimes we might want to return a number (e.g. int) or a word (e.g. string) from a

function to use elsewhere in our code.

Inside the brackets on line 7 we specify the arguments of the function, these are pieces of
information that we want the function to use to do a calculation. An array is a collection of items
of a specific size.

On line 9 we call the WriteLine function for the Console object. The Console object is how

we access the terminal window that the program displays when you run it (see figure 1).

Figure 1: The Terminal Window

The WriteLine function is predefined in the class for a Console object, it is rather self-

explanatory in that it writes a line to the Console by taking one argument, in this case the

string “Hello World!” and displaying it to standard output (the terminal). Recall that a class

is the blueprint for an object. A class may contain variables and functions and we use them to
encapsulate data (this is one of the fundamental building blocks of object-oriented
programming).

Exercises:

1. Create a new console project in Visual Studio called Hellow (ask for help if you are
unsure).

2. Type in the above program.
3. Did it run too quickly? Try adding “Thread.Sleep(1000);” after line 9 so you can

see the display.
4. Can you change the program so that it says “Hello <your name>!” where you replace

“<your name>” with your own name?

 Au Reikura
School of Computing & Mathematical Sciences

 4

Selection

In a program we can make a choice based on a condition. For example, if we have exactly three
items in an array then we might want to print the length, if not we might want to tell the user that
the array is too short. Let’s consider what this program would look like in C#:

01 using System;
02
03 namespace Hellow
04 {
05 class MainClass
06 {
07 public static void Main(string[] args)
08 {
09 string[] arr = new string[3];
10 if(arr.Length==3) {
11 Console.WriteLine(“Array size: “ +

arr.Length);
12 } else {
13 Console.WriteLine(“Array is too short”);
14 }
15 }
16 }
17 }

Lines 1-8 of the program are the same as our last example, so let’s focus on line 9. Here we are
creating a variable called arr. Every time you create a variable in C# it must have a data type

associated with it, we have already seen a few data types such as a string (for a sequence of

characters, or a word) or an int (for a negative or positive whole number). In this case we are

creating a string array, arrays are denoted by specifying the data type of the array followed by
square brackets and then the name. The “=” character here denotes assignment in that what
comes next is what is “stored” in the variable. You can think of a variable as a container which
holds data of a specific type. In this case we want to create a new string array so we use the new
keyword followed again by the data type string with the size of the array in square brackets.

If we consider what the array looks like we have the following empty structure:

0 1 2

Figure 2: Empty Array of Size 3

 Au Reikura
School of Computing & Mathematical Sciences

 5

Note that the positions in the array start at 0, we call this the index into the array. Indexes are
important because they allow us to retrieve or store data from or in the array. For example:

arr[0] = “Hello!”;

This line of code allows us to set position 0 in the array to be the string “Hello!”. Internally the
array now looks like this:

0 1 2

Hello!

Figure 3: Array of Size 3 with a Single Item

If we then wanted to retrieve that same string we would also use the notation “arr[0]” as this

tells C# to access the string array arr and get the information at position 0. For example, if we

wanted to create a new variable to store what was at position 0 we could use the following:

string first_item = arr[0];

This would allow us to store just the first position of the array into a new variable called
first_item.

Now we consider the if statement, or rather conditional statement on line 10. This asks the
question “does the array arr have a length/size of 3?” if it is true line 11 will be executed, if it is

false then line 13 will be executed. This is why we call this selection, as the code which is
executed is dependent on if the conditional statement is true or false.

Note that here we use “==” for comparison of two statements. This is simply because we use a

single “=” for assignment and C# will assume assignment when it sees a single equals sign. This

is a common cause for typos in your programs so watch out for this easy to make mistake.

Conditional statements can take various forms. For example:

● A single condition: if(arr.Length==3) { … }

● A single condition with an else: if(arr.Length==3) { … } else { … }

● Multiple conditions: if(arr.Length==3) { … } else if(arr.Length==4)
{ … } else if

● Multiple conditions with a final else: if(arr.Length==3) { … } else
if(arr.Length==4) { … } else { … }

 Au Reikura
School of Computing & Mathematical Sciences

 6

However, you cannot have an “else” or “else if” without an initial if statement as above, as

the else is dependent on the first condition.

There are several operators that we can use inside of our conditional statements. For now we will
only focus on the “simple” comparators:

● Comparison: ==

● Greater than: >

● Less than: <

● Greater than or equal to: >=

● Less than or equal to: <=

● Not equal to: !=

You can use any of the above comparators for comparing data types like strings, ints and arrays
(and obviously other data types we haven’t seen yet!).

Lastly, let’s discuss line 11, here we can see an example of string concatenation (i.e. the process
of “adding” strings). This allows us to build strings by using variables of different types.
Length is a property of the array class, for every array you create you can find out its length by

requesting the length property in this way. A property is simply a publicly accessible variable
inside a class. As the property is a variable it has an associated data type, in this case the length
variable is an int. Typically, you can’t mix different data types, in this case a string “Array
size: “ and an int 3 but C# knows string concatenation is taking place and therefore

automatically converts the int to a string using the ToString() function.

The ToString() function exists for every object defined in C# and you can call it by using the

following “arr.Length.ToString()”. It contains the representation of a particular object

as a word.

In terms of combining strings (string concatenation) this is useful for including variables inside
of strings that you want to display. For example:

01 int index = 0;
02 string display = “The item at index “ + index.ToString()
 + “ is “ + arr[index];
03 Console.WriteLine(display);

If we assume the array has the contents from figure 3, the output for this in the terminal window
is “The item at index 0 is Hello!”.

 Au Reikura
School of Computing & Mathematical Sciences

 7

Exercises:
1. Create a new console project in Visual Studio called Selections.
2. Type in the example program from above and test it to ensure it works as expected.
3. Can you modify the program so that it always prints the size of the array if it is greater

than 0?
4. Can you modify the program so that you fill each space in the array?

Loops

In most programming languages there are two different types of loop structures to consider,
while and for loops. While loops use a conditional statement similar to an if statement which
continues to execute the code inside the loop while the conditional statement is true.
Alternatively, for loops are best used for iterating through a collection of items, such as an array.
Next we alter our above code to print out all the values inside the array. We will look at two
examples, one which uses a while loop and one which uses a for loop.

01 using System;
02
03 namespace Hellow
04 {
05 class MainClass
06 {
07 public static void Main(string[] args)
08 {
09 string[] arr = new

string[3]{“one”,”two”,”three”};
10 if(arr.Length==3) {
11 Console.WriteLine(“Array size: “ +

arr.Length);
12 int count = 0;
13 while(count < arr.Length){
14 Console.WriteLine(“arr[“ + count +
 “]=” + arr[count]);
15 count++;
16 }
17 } else {
18 Console.WriteLine(“Array is too short”);
19 }
20 }
21 }
22 }

 Au Reikura
School of Computing & Mathematical Sciences

 8

The new code is on lines 9 and 12-16. On line 9 we have used a shorthand notation to specify the
contents of our array. This results in the following internal structure:

0 1 2

one two three

Figure 4: Contents of Array arr

Next on line 12 we create a new int variable called count which stores the number 0. Line 13

is the declaration of the while loop and inside our condition we specify that the loop should
continue to execute while the count is less than the length of our array arr.

On line 14 we print out the information stored at the current index by using the count variable as
the index into the array. Then on line 15 we increment the count by using the notation “++”. This

is shorthand for specifying “count = count + 1;” and will always increment the count

by exactly one int.

Lines 14-15 will continue to be executed until the condition on line 13 is false, that is when
count is equal to or greater than the array length. In this case the loop will “break” when the
count is equal to 3 as this is the length of our array. After the loop breaks the next line to be
executed is line 16 which simply signals the end of the while loop.

Now let’s consider what this would look like with an equivalent for loop:

01 using System;
02
03 namespace Hellow
04 {
05 class MainClass
06 {
07 public static void Main(string[] args)
08 {
09 string[] arr = new

string[3]{“one”,”two”,”three”};
10 if(arr.Length==3) {
11 Console.WriteLine(“Array size: “ +

arr.Length);
12 for(int count=0; count < arr.Length;

count++){
13 Console.WriteLine(“arr[“ + count +
 “]=” + arr[count]);
14 }

 Au Reikura
School of Computing & Mathematical Sciences

 9

15 } else {
16 Console.WriteLine(“Array is too short”);
17 }
18 }
19 }
20 }

Note that in this version of the program the length of the code is reduced due to the format of the
for loop statement. Every for loop is made up of 3 separate statements: iterator variable,
condition, and increment. If we consider line 12 our iterator variable is an int called count

which initially stores the value 0; the condition is that the count must be less than the array

arr length for the loop to continue to execute, like a while loop when this is false the loop

breaks; lastly we specify the increment, in this case we increment the count by one on each

iteration of the loop.

This will give us exactly the same output as our while loop. Determining which type of loop to
use is dependent on the situation for which you are iterating. In this instance it is obvious that a
for loop is the better selection as it reduces the length of the code while not obscuring its
meaning. However, in other situations, such as when we want to specify multiple conditions to
loop on, a while loop is the better choice. Selecting the correct loop can enhance the performance
of your program and quality of your code.

Exercises:

1. Create a new project in Visual Studio called Looping.
2. Type in the example programs to ensure that they work as expected.
3. In your for loop version can you work out how to add an additional for loop to print each

individual character of the string? (ask for help if you are stuck!)

Summary

Here’s the good news, now you have been introduced to the basics to programming structures,
you can program in any programming language you want! However, different languages have
different syntax and “quirks” and are used for different purposes. For example, SQL is a
language that is used for querying databases while PHP is used for server side scripting (for
websites amongst others).

The bad news is that while you have seen the basics of programming structures, they are exactly
that “the basics”. There are so many different concepts we haven’t explained in detail such as
how variables are assigned in memory, other collections like lists or hash tables, complex data
types, programming paradigms, how computers understand programs, algorithms, usability,
human computer interaction and so on.

 Au Reikura
School of Computing & Mathematical Sciences

 10

Programming is simply scratching the surface of the computer science and software engineering
subject areas and simply a tool that software developers or engineers use to automate and build
technological solutions to big problems (e.g. COVID-19 Vaccine Rollout, Internet Banking, iOS,
Android etc.). To quote E.W. Dijkstra (a famous computer scientist): “Computer Science is not
about computers, any more than astronomy is about telescopes.”

Advanced Exercises

Already know about the basics of programming structures? See if you can create a Rock Paper
Scissors game as a Console application. The program should allow a user to play against the
computer. Use a random object to create a random selection for the computer (rock, paper, or
scissors) and allow the user to type in their own selection into the terminal. Using conditional
statements determine who the winner will be and print this to the console.

1. Can you iterate the game so that it can be played more than once?
2. Can you modify the game to meet the conditions of Rock Paper Scissors Lizard Spock

(from The Big Bang Theory, see figure 5)?
3. How can the user type in the word “quit” to end the game and break the loop?

Figure 5: Rock Paper Scissors Lizard Spock

Retrieved from: https://upload.wikimedia.org/wikipedia/en/c/cc/Rock_paper_scissors_lizard_spock.png

Useful Resources

● C# Documentation: https://docs.microsoft.com/en-us/dotnet/csharp/
● W3 Schools C# Tutorials: https://www.w3schools.com/cs/index.php
● Edsger Dijkstra IEEE Profile: https://www.computer.org/profiles/edsger-dijkstra
● C# Random Objects: https://docs.microsoft.com/en-

us/dotnet/api/system.random?view=net-5.0#Instantiate
● C# User Input: https://www.w3schools.com/cs/cs_user_input.php
● Rock Paper Scissors Lizard Spock: https://www.youtube.com/watch?v=zjoVuV8EeOU

