
Au Reikura
School of Computing and Mathematical Sciences

 1

DEPARTMENT OF

COMPUTER SCIENCE
Te Tari Rorohiko

2025

Au Reikura
School of Computing and Mathematical Sciences

 2

Contributors

J. Turner

V. Moxham-Bettridge

J. Bowen

J. Kasmara

© 2025 University of Waikato. All rights reserved. No part of this book may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without prior consent of the Department of
Computer Science, University of Waikato.
The course material may be used only for the University’s educational purposes. It includes extracts of copyright
works copied under copyright licences. You may not copy or distribute any part of this material to any other person,
and may print from it only for your own use. You may not make a further copy for any other purpose. Failure to
comply with the terms of this warning may expose you to legal action for copyright infringement and/or disciplinary
action by the University.

Au Reikura
School of Computing and Mathematical Sciences

 3

INTRODUCTION TO PYTHON

Today we introduce you to a scripting language very popular in the realms of data science,
mathematics and website development, Python. How Python differs from other languages you
may have encountered before is that it is a scripting language rather than a programming
language (although this term is often used interchangeably). The difference in terms relates to
how they are executed.

Figure 1: A diagram showing the difference between interpretation and compilation1

Interpreted vs Compiled languages

If you're working through this manual, then chances are you have encountered compiled
languages before, either from a previous CSNeT or through your own experience. A few
examples of these that you are probably familiar with are C# (used for game development with
Unity), Java (the language that Minecraft was built with), Go, Rust and so on. The compilation
process (see figure 1) starts when the code you write (this is called source code) goes through a
translator (called the compiler) which translates your code to numbers the computer can
understand (this is called machine code, see figure 2). Once translated, the machine code can be
run (often by double clicking on a program icon) which results in some output being displayed.

1 Diagram retrieved from https://www.guru99.com/difference-compiler-vs-interpreter.html

Au Reikura
School of Computing and Mathematical Sciences

 4

Due to this, once a program has been compiled, it can be run as many times as is desired without
the need to recompile (unless changes to the source code have been made).

With interpreted languages however, each line of source code is read by a translator that
translates it into machine code that produces some output at the time of execution (i.e. after you
have clicked on the program's icon). This happens one line at a time which is why interpreted
languages are usually slower than their compiled counterparts. Unlike compiled languages, there
is no final executable file generated that can be reused, which means the whole translation
process takes place every time you run the program. Although Python is typically used in the
fields of machine learning and data science, some game studios have used it to build their
products, with popular examples being Battlefield 2 and The Sims 4.

Figure 2: A diagram showing the difference between source code and machine code

The Tic-Tac-Toe game

Your task for this week is to finish a command-line interface (CLI) implementation of the game,
Tic Tac Toe2. The tic_tac_toe_game.py file (the one you will be modifying to do the

exercises below) can be found on the Slack channel. Open the file in Visual Studio Code and
have a quick look through it to familiarise yourself with the contents before continuing.

How to get started

As this game is CLI based, we first have to open a terminal to run our game in, fortunately
Visual Studio Code features various integrated terminals which makes this easy.

2 Code adapted from https://www.scaler.com/topics/tic-tac-toe-python/

Au Reikura
School of Computing and Mathematical Sciences

 5

To open a terminal, locate the toolbar at the top of the screen and click on the word 'Terminal'. A
dropdown menu will then appear presenting more options; now select 'New Terminal' (see figure
3).

Figure 3: Opening a terminal in Visual Studio Code

A terminal window should now appear at the bottom of the screen (see figure 4).

Au Reikura
School of Computing and Mathematical Sciences

 6

Figure 4: The opened terminal in Visual Studio Code
The terminal opens in a different location to where your file is located, so to make sure we are in
the correct place, type 'cd Downloads' (which means change directory to 'Downloads') and

press enter. To then run the game, type 'python tic_tac_toe_game.py'.

An error message will now appear in the terminal, see figure 5 below.

Au Reikura
School of Computing and Mathematical Sciences

 7

Figure 5: The error message

The program breaks and does not run, why?

When issues occur unexpectedly, the first place to start is with the error message as it usually
provides helpful information about the error (or errors if multiple occur). The message we've
received states there is a 'NameError' error on line 164 of the code due to a variable,

'player_first', being undefined.

Au Reikura
School of Computing and Mathematical Sciences

 8

Looking at the code on line 164 (see figure 6 below), we see that the value of player_first

is to be stored in player_current, however player_first hasn't been initialised or even

created yet hence the 'NameError' error (i.e. the variable doesn't exist).

Figure 6: The section of code the error message was referring to

To fix this, we should store the player's name in a variable called 'player_first', however,

we need to get the name from the player first. To do this, we need to change the print

statements to input statements as that will allow us to display text to the terminal but also

receive input from the user.

Change line 149 to 'player_first = input("The first player's name")' and

do the same for the second player on line 152 (i.e. store their name in a variable called
'player_second').

Now run the program using the command mentioned on the previous page and the game should
start successfully. If an error message occurs, it means you have done the previous step wrong

Au Reikura
School of Computing and Mathematical Sciences

 9

(make sure the variables are named 'player_first' and 'player_second' otherwise the

game will break).

After entering the players' names, the game should now present a scoreboard (see figure 7),
however the message currently displayed is very confusing (i.e. who gets to choose first?).

Figure 7: The game's scoreboard

To let the players know who starts, we need to modify the print statement on line 183 (see

figure 8).

Au Reikura
School of Computing and Mathematical Sciences

 10

Figure 8: The print statements for the scoreboard

For the sake of simplicity, we'll let the first player start the game. The print method in Python

makes this easy as all we have to do is pass it the variable that holds the first player's name (i.e.
player_first); see figure 9.

Figure 9: Modifying the print statement

Now when it is run, you should see the name that was entered for the first player. Try out the
options presented, what happens?

If you had tried them all, you should have noticed that the first and second options work but the
last option caused an error. Ignoring that for now, have a look at the series of if statements on

lines 206 - 225 (see figure 10 on the next page). Although the third option is meant to quit the
game, does it do so?

Au Reikura
School of Computing and Mathematical Sciences

 11

Figure 10: The logic for the menu of options presented to the player

The answer is no, the game doesn't quit. It prints 'Exiting…' but doesn't actually exit due to no

code instructing it to do so. To fix this, we need to add a break statement which means we exit

the block of if statements and continue on line 228. As this menu appears before each game

starts, we should also display the scoreboard to the terminal so the players can see their scores
(this is very handy if they have played multiple games already), as shown on line 223 (see figure
11).

Figure 11: Adding the required functionality for the 'Exit' option

Au Reikura
School of Computing and Mathematical Sciences

 12

If you run the game and select the third option now, it should successfully quit (see figure 12).
When the user's current path shows in the terminal followed by a square cursor (the line
highlighted), it indicates the previous task has finished (the game, in our case).

Figure 12: The terminal once the 3rd option has been selected

Take a moment to play the game and try to identify any flaws or 'buggy' actions before
continuing.

The first major flaw of the game occurs when a player is selecting a position to place their
character. If you enter any of the expected positions (i.e. 1 - 9), it works fine, however, when you
enter any other number, the game crashes (see figure 13).

Au Reikura
School of Computing and Mathematical Sciences

 13

Figure 13: The error encountered when selecting an invalid position

To prevent this from happening, we need to check whether the position is valid before attempting
to place a token there. This is done by adding an if statement which checks if the input is invalid
(i.e. outside the bounds of 1 - 9), see figure 14.

Figure 14: Adding the check for the position entered

How the if statement works is by performing up to three separate boolean evaluations (a

boolean is a data type that only has 2 values, either true or false). Firstly, as statements

are read from left to right, we confirm if chance (which holds the position selected) is less than

1. If it is less than 1, it evaluates to true (else it's false if not). Next, the logical operation is

identified, and in this statement it is an or. This means for the if statement to execute (i.e. reach

line 115), 1 or more of the conditions need to evaluate to true. Therefore, if the first condition

(chance < 1) is true, then it has satisfied the logical or operation so the if statement

Au Reikura
School of Computing and Mathematical Sciences

 14

executes and the second condition (chance > 9) is skipped. However, if the first condition

was false, the second condition would need to be true for the if statement to execute. This

means if both conditions were true, only the first one would need to be evaluated (and the

second one skipped) for the if statement to execute. Hopefully it is obvious that if both

conditions were false, all evaluations would return false (resulting in no execution of the

if statement).

To inform the user of their invalid input, you should include a print statement with a helpful

message on line 114 (do this before continuing).

You may have wondered what continue is for on line 115, this is used to change the flow of

execution. Similar to that of a break statement (which breaks out of the current scope), the

continue statement skips the remaining code in a loop's current iteration. Using this code as

an example, if we're on line 115, after the continue executes we'll be on line 94 about to start

the 'while True' loop again.

Test the position selection, does it break when you enter '101'? (Note: It shouldn't, if it does then
you have done something wrong). Does your message inform the user of the invalid input?

Now you have completed the introduction and have made some basic modifications, have a go at
the following exercises to further develop the Tic Tac Toe game.

Exercises:

1. Add a welcome message when the game loads (see comments on line 3)
2. Add an informative message when the user enters a non-integer value for position

selection (see comments on line 105), test to ensure it works.
3. While playing the game, try to type the same name in for player one and player two, what

happens? How do you fix it? (see comments on line 160).
4. Currently only the first player can start the game, how could you change this so that each

time a game is played it alternates between players? (see comments on line 244).

Summary

Today's session introduced you to Python programming through a simple CLI implementation of
the game Tic Tac Toe. We explored the differences in language execution (interpretation vs
compilation) and utilised various Python statements to get the game working. We touched on
concepts such as the boolean data type, logical operations, controlling execution flow and input
checking. Next week we will be using Python in the context of programming Micro:bits.

