

DEPARTMENT OF

COMPUTER SCIENCE
Te Tari Rorohiko

2025

Contributors

J. Turner

R. Mercado

V. Moxham-Bettridge

J. Kasmara

© 2025 University of Waikato. All rights reserved. No part of this book may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without prior consent of the Department of
Computer Science, University of Waikato.
The course material may be used only for the University’s educational purposes. It includes extracts of copyright
works copied under copyright licences. You may not copy or distribute any part of this material to any other person,
and may print from it only for your own use. You may not make a further copy for any other purpose. Failure to
comply with the terms of this warning may expose you to legal action for copyright infringement and/or disciplinary
action by the University.

School of Computing and Mathematical Sciences
Te Kura Rorohiko Me Ngā Pūtaiao Pāngarau

 3

THE SOFTWARE DEVELOPMENT LIFECYCLE:
ANALYSIS

Last week we briefly discussed the planning phase of the SDLC, this included determining
exactly what it is that a client wants from a new piece of software. This week we will move on to
the analysis phase. More than just knowing what the client needs or wants from a piece of
software, we must clearly define the requirements that the software must adhere to.

What is Analysis?

Recall from last week that the analysis phase consists of two sub-processes:
● What are the requirements of the system?
● Out of those requirements, which are important, redundant etc?

Specifically, we consider two types of requirements, functional and non-functional requirements.
Functional requirements describe the functionality that is required of a software system while
non-functional requirements are criteria the system and user interface must satisfy to be
acceptable. To quote the Software Engineering Body of Knowledge (SWEBOK): “Software
requirements express the needs and constraints placed on a software product that contribute to
the solution of some real-world problem.”1

Consider the following video: https://www.youtube.com/watch?v=zCX-N1H8Vps which
reiterates the differences between functional and non-functional requirements.

1 http://swebokwiki.org/Chapter_1:_Software_Requirements

School of Computing and Mathematical Sciences
Te Kura Rorohiko Me Ngā Pūtaiao Pāngarau

 4

Figure 3: Software Requirements Fundamentals2

Figure 3 depicts the broader area and different tasks involved in the software requirements stage.
For this session we will only focus on the first area “Software Requirements Fundamentals”. By
briefly reading over each of the different areas you can see how necessary software requirements
are to the development process. They are used as the basis for what the software should do. If a
system fails to adhere to its requirements we can say that it does not work as expected. In order
to determine this, verification, validation and/or testing is carried out to ensure that the software
has been implemented correctly (we will look at this in more detail later).

Software Requirements

Naveda et al. in their book “IEEE Computer Society Real-World Software Engineering
Problems, 2006, Vol. 6”3 detail various requirements problems through a series of questions.
Let’s take a look at some of these problems and their explanations next to help gain a better
understanding of software requirements.

2 http://swebokwiki.org/File:Software-requirements.jpg
3 Naveda, J. (2013). Software Requirements. In IEEE Computer Society Real World Software Engineering
Problems (pp. 15-78). Hoboken, NJ, USA: John Wiley & Sons.

School of Computing and Mathematical Sciences
Te Kura Rorohiko Me Ngā Pūtaiao Pāngarau

 5

Exercise #1

Jo is gathering the requirements for a software-controlled furnace. After interviewing several
users, Joe obtained the following requirements list:
R1. Gas inlet valves should always be open when furnace is heating.
R2. Heating stops when furnace temperature reaches 150 degrees celsius.
R3. Furnace temperature should increase gradually when heating.
R4. The gas inlet valves should be close when the temperature goes about 200 degrees celsius.

Which requirements defects (ambiguous, design dependent, incomplete, unverifiable) can be
identified in Jo’s requirements list?

R3 is ambiguous and unverifiable because of the use of the word “gradually” because we cannot
quantify its meaning. That is, we cannot know what amount to increase the temperature by in
order for it to be gradual. To fix this we would need to specify the rate of increase e.g. “1 degree
celsius per second”.

The requirements Jo has specified are also incomplete because they do not explain what happens
when the heating is complete (over 150) or when the valves are closed (over 200). For example,
we could assume that valves remain open but we do not know for certain.

Exercise #2

During a software development project, 2 similar requirements defects were detected. One was
detected in the requirements phase, and the other during the implementation phase. Which of the
following statements is most likely to be true?

a. The most expensive defect to correct is the one detected during the requirements phase.
b. The most expensive defect to correct is the one detected during the implementation

phase.
c. The cost of fixing either defect will usually be similar.
d. There is no relationship between the phase in which a defect is discovered and its repair

cost.

The answer here is b, the longer it takes for a defect to be found the more expensive it is to
correct the design. Empirical evidence shows that the cost to correct a defect found in the design
is generally 2.5 to 5 times the cost of fixing a defect found during the requirements phase.

School of Computing and Mathematical Sciences
Te Kura Rorohiko Me Ngā Pūtaiao Pāngarau

 6

Similarly, a defect during implementation will cost 5 to 10 times as much, and one found in
testing costs 10 to 20 times as much.

Exercise #3

Which of the following statements is not a valid requirements specification?

a. Software shall be written in C.
b. Software shall respond to all requests within 5 seconds.
c. Software shall be composed of the following 23 modules.
d. Software shall use menu screens whenever it is communicating with the user.

The answer here is c as it is a statement describing the structure of the software. Software
requirements should not include project requirements, design information or product assurance
plans. Conversely, A is a valid non-functional requirement, while B and D are valid functional
requirements.

Exercise #4

You are a requirements engineer working on a project to enhance a course-registration and
payment system for a large public university system. Although you are new to the tasks needed
to complete the project’s requirements phase, you are asked to lead the team.

You need to elicit requirements for the system. Which elicitation technique will BEST allow you
to understand both the typical and atypical activities and tasks involved in course registration and
payment?

a. Observation (watching people use the existing system)
b. Prototypes (building mock ups of the software)
c. Interviews (sitting down and asking people who use the existing system questions)
d. Questionnaires (sending out questions and asking people who use the existing system to

respond)

The answer here is a, observation. While best practice will require you to use multiple
requirements elicitation techniques, observation is the best to uncover the way people actually
perform their work (atypical) as opposed to the documented process (typical).

The other options may also be used but each has its own specific benefits in terms of the
requirements. Developing a quick prototype provides a starting point for discussion and will help

School of Computing and Mathematical Sciences
Te Kura Rorohiko Me Ngā Pūtaiao Pāngarau

 7

to get a sense of initial requirements. Interviews assist with finding conscious and concrete
requirements. Lastly, questionnaires are the most limited, as they tend to address items we
already know about.

Exercise #5

You are a requirements engineer working on a project to enhance course-registration and
payment system for a large public university system. You are the requirements analyst. You are
also a recent university graduate, so you have experience in the problem domain. Consequently,
less time is allocated for understanding the problem domain.

Which of the following is MOST LIKELY consequence of conducting the requirements
specification phase under these conditions?

a. Subtle mismatches between your conceptual understanding and the proper meaning of
concepts within the domain are present and will require rework.

b. The time saved during the elicitation process is allocated to the requirement validation
process, where more defects can be detected.

c. Time is saved during the requirements specification process since you do not need to
spend time asking follow-up questions to the stakeholders.

d. Mismatches in your conceptual understanding and the proper meaning are less likely to
occur. The quality of the requirement specification is maximised.

The answer here is again A. Your prior understanding may conflict with what the client actually
wants. Van Vliet states, “Subtle mismatches between the analyst’s notion of terms and concepts
and their proper meaning within the domain being modelled can have profound effects. Such
mismatches can most easily occur in domains we already ‘know’, such as a library.” Therefore, it
is unlikely that any prior knowledge you have will actually be useful, and if you rely on that
prior knowledge you may actually introduce defects and increase time costs.

Furthermore, keep in mind that software developers are not “typical” users of software, as they
are more likely to be able to work around any problems that they might encounter. We need to be
able to design software for non-technical users and it is important that we take this into account
throughout the entire SDLC process.

School of Computing and Mathematical Sciences
Te Kura Rorohiko Me Ngā Pūtaiao Pāngarau

 8

Exercises: Analysis

On the Slack channel there is a completed example proposal for the software that you began
designing last session. Using this proposal, define a list of what you think are the functional and
non-functional requirements needed for the software. Here are some examples to get you started:

Functional Requirement: R1. Filter data carbon emissions by company.
Non-functional Requirement: R2. Results from carbon emissions data must be returned

within 2 seconds.

Summary

In this session we covered functional and non-functional requirements as part of the Analysis
phase of the SDLC. Next week we will begin discussing the design phase where we will
introduce personas and scenarios, which are useful methods when determining and clarifying a
system’s intended purpose and audience.

Useful Resources

● Naveda, J. (2013). Software Requirements. In IEEE Computer Society Real World
Software Engineering Problems (pp. 15-78). Hoboken, NJ, USA: John Wiley & Sons.
https://ieeexplore.ieee.org/book/5989366

● P. Bourque and R.E. Fairley, eds., Guide to the Software Engineering Body of
Knowledge, Version 3.0, IEEE Computer Society, 2014; www.swebok.org

