

DEPARTMENT OF

COMPUTER SCIENCE
Te Tari Rorohiko

2025

Contributors

J. Turner

V. Moxham-Bettridge

B. Jones

J. Kasmara

© 2025 University of Waikato. All rights reserved. No part of this book may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without prior consent of the Department of
Computer Science, University of Waikato.
The course material may be used only for the University’s educational purposes. It includes extracts of copyright
works copied under copyright licences. You may not copy or distribute any part of this material to any other person,
and may print from it only for your own use. You may not make a further copy for any other purpose. Failure to
comply with the terms of this warning may expose you to legal action for copyright infringement and/or disciplinary
action by the University.

Au Reikura
School of Computing and Mathematical Sciences

 3

LEGO MARIO: DATA ANALYSIS

Last week we introduced you to LEGO® Super Mario™ and tasked you with building interesting
levels to then traverse using the interactive figurine. We continue on with this in today’s session
but look at how we can communicate with the figurine using the Bluetooth connection.

A Closer Look at the Data Generated

As mentioned in the previous session, the interactive figure (which we may also refer to as ‘Lego
Mario’ from now on) has multiple sensors (see figure 29 in the previous session for a labelled
diagram of these): an accelerometer for detecting movement in 3 axes, an optical sensor which
can detect the colour of a surface and read the tile barcodes and a method that recognises what
pants Lego Mario is currently wearing. Each of these sensors and/or methods generates data
which we can analyse to get a better understanding of how Lego Mario works.

PyLegoMario Python Library

In the Useful Resources section of last week’s session was a link to a YouTube video titled
‘Using Code to Unleash Lego Mario’. The content in the video was inspiration for this week’s
session so if you haven’t watched it already, please watch it at this link:
https://www.youtube.com/watch?v=Zi-3scHOR1Q

As explained in the video, Jamin Kauf (the YouTuber) found a project online that allows you to
connect to a figurine via Bluetooth using a Python script. Kauf developed this further and created
a GUI that displays all of the available data (see figure 35). They also created other projects such
as using Lego Mario as a controller for the Super Mario 64 game, a custom soundboard (using
the tile barcodes as triggers) and integrating Lego Mario with the PyGame Python library.

Au Reikura
School of Computing and Mathematical Sciences

 4

Figure 35: The GUI Included in the pyLegoMario Python Library

Before we can start attempting any of those projects, we first must cover the basics of the
pyLegoMario library to see how it works and how to use it.

Open Visual Studio Code and create a new Python file called lego_mario_basics.py.

Now type in the code shown in figure 36 below.

Figure 36: The Code for Displaying the GUI

We will be using the CLI to run the code so open a terminal now; do you remember the
command for running Python scripts?

Au Reikura
School of Computing and Mathematical Sciences

 5

Once the terminal is open and ready (often denoted by the path displaying followed by a ‘>’),
type python lego_mario_basics.py in and press enter (remember to save the file first!).

You should then be presented with the screen shown in figure 37.

Figure 37: The GUI When First Opened

Notice how the title of the window is ‘Lego Mario – Connecting...’, this is because we need to
pair the figurine with the computer. To do this, turn Lego Mario ON and then press the Bluetooth
pair button (you will see dots appear on their belly screen, see figure 38).

Au Reikura
School of Computing and Mathematical Sciences

 6

Figure 38: What Displays While Bluetooth Pairing

It may take a few attempts so don’t worry if it takes a while to connect. When it does connect,
you should see the screen shown in figure 39.

Au Reikura
School of Computing and Mathematical Sciences

 7

Figure 39: What the GUI and Terminal Display When Paired

Using the worksheet provided, complete the following exercises.

Exercises:

1. Keep Lego Mario (or Luigi or Peach etc.) standing on the table and move him left and
right, what happens?

2. Now place Lego Mario in the centre of the worksheet (the centre is denoted by the picture
of Lego Mario).

3. Tilt Lego Mario left and then right, what happens? What values change? What axis (or
axes) does this movement correspond to? Write your answers on the worksheet next to
the blue arrows.

4. Repeat exercise 3 but tilt forward and backward. Again, what values change? What axis
(or axes) does this movement correspond to? Write your answers on the worksheet next to
the green arrows.

5. Complete the remaining arrows on the worksheet.
6. The Y-axis value is currently positive, how would you orient Lego Mario so that the

value is negative?
7. Place Lego Mario on 4 different coloured surfaces, what happens? Are all colours

recognised?

Au Reikura
School of Computing and Mathematical Sciences

 8

8. Place Lego Mario on 4 different tile barcodes, what happens? Again, are they all
recognised?

Hopefully you noticed that as you attempted the exercises, the values displayed on the GUI and
CLI updated. For exercises 3 – 5, their answers can be seen in figure 40 below (note that for the
max values, yours may be slightly different – especially for the left and right sides). To get the Y
axis value to be negative, Lego Mario needs to be tipped upside down so that his head is closer to
the ground than his feet. For the last 2 exercises, you should have noticed that most colours and
codes were recognised but not all. This isn’t actually a bad thing as it means we can create
custom codes and assign custom actions to them that are executed (computer side) when
scanned.

Figure 40: Lego Mario Accelerometer Worksheet Answers

Understanding the Code

The pyLegoMario code has been written asynchronously which means the code doesn’t
necessarily execute in sequential order (e.g. line 40 after line 3). This is because of the
asynchronous nature of the figurine, as, would you be able to predict when an accelerometer

Au Reikura
School of Computing and Mathematical Sciences

 9

event would occur (i.e. Lego Mario being moved) or when a tile would be scanned? No, well it’s
very unlikely which is why the code has to be written so that it can accommodate spontaneous
occurrences. See figure 41 for the difference between synchronous and asynchronous execution.

Figure 41: Synchronous vs. Asynchronous Execution Diagram

To see how this is implemented, let’s look through the code which can be found at this link:
https://github.com/Jackomatrus/pyLegoMario.

Once the page loads, click on the ‘pyLegoMario’ folder (the one with a blue folder icon) to see
the code files. This code has been installed on the computer you’re currently using, however
where the files are located requires admin permission to access which is why we’re viewing
them in the GitHub repository.

Attempt the following exercises while looking through the repository. Don’t worry if the
following leaves you feeling a little unsure about how it works, that’s okay, it’s more about the
underlying concepts (like asynchronous execution) so feel free to ask staff for help if you would
like any clarification.

Exercises:

1. Scan through the ALL_RGB_CODES.json file, what pieces of data are stored for each

one?
2. Read (quickly) through the mario.py file, what do you think this file is for? What does

it do?

Au Reikura
School of Computing and Mathematical Sciences

 10

3. Read (quickly) through the lego_mario_data.py file, do you see what the constants

used in the previous file are for? (i.e. the variables with names in capital letters such as
HEX_TO_COLOUR_TILE and HEX_TO_RGB_TILE).

4. Scan through the mario_GUI.py file (this is what creates the GUI window in the

program you just run).

For the first exercise, you would have seen that 4 strings and 1 integer constitute an entry in the
JSON array. Of those 4 strings, 1 is a hex code which is used along with the integer to determine
what colour surface Lego Mario is currently on (see figure 42).

Figure 42: The _handle_events() Function in the mario.py file Showing Surface Colour

Determination

The mario.py file creates a Mario class which houses the logic for connecting via Bluetooth,

retrieving data, calling the method hooks and basic Lego Mario control (such as volume level
and turning the figurine off). This is a very important file as most of the other files require a
Mario object to function.

Au Reikura
School of Computing and Mathematical Sciences

 11

With the third exercise you can see the definitions of the constants used in the mario.py file.

Most of them contain a dictionary where you need a key in order to access the value which is
what lines 316 and 317 shown in figure 42 relate to.

We asked you to scan through the mario_GUI.py file instead of reading it because we won’t

be modifying it or using it as a basis in this series.

Adding Hooks

While reading through the contents of the mario.py file, it’s likely you would have seen code

referring to or mentioning ‘hooks’. A hook is a mechanism which allows developers to add their
own functionality to code that already exists without modifying the original code (Startup-
House, n.d.). In our case, it means that we don’t have to modify the mario.py file to add extra

functionality as we can just add to the hook lists (i.e. add to the _accelerometer_hooks,
tile_event_hooks, _pants_event_hooks and _log_event_hooks lists).

Let’s try this by adding the following code to the lego_mario_basics.py file we created

earlier.

04 ...
05 MarioWindow(mario)
06
07 def display_pants_hook(mario: Mario, powerup: str) ->

 None:
08 print(f”I’m wearing {powerup} pants!”)
09
10 mario.add_pants_hooks(display_pants_hook)
11
12 #call run() at the end of your program...
13 ...

Now save and run your code to see what happens! Note: you will need to take off the pants to
trigger the hook (and remember to look in the terminal window).

How this code works is by first creating a function called display_pants_hook (on line 7)

that takes 2 arguments: the Mario object and a string (the name of the pants). Each argument is
followed by a : which means the argument is expected to be of the type included after the :. For

example, ‘mario’ is an object passed in and is expected to be of type Mario, and the argument,

'powerup’ is expected to be of type string. These are called ‘Annotations’ which aren’t

actually enforced by the interpreter as they are primarily used for documentation purposes. The

Au Reikura
School of Computing and Mathematical Sciences

 12

‘-> None’ is the same in that it is an annotation which means that the expected return type for

the function is None (i.e. nothing is expected to be returned). On line 8 we have a formatted

print statement which prints the string to the terminal and on line 9 we add the function to the
_pants_event_hooks list which means whenever a pants event occurs, this method (along

with the others in the list) will execute.

Also while reading through the code you may have noticed the keywords: async and await.

These inform the interpreter of the code’s asynchronous behaviour with async primarily used

for function definitions (can be applied to for and with statements too) and await used to

suspend execution of objects that are ‘awaitable’ (i.e. can be an async function or an object with
an await function).

Today’s Exercise

Now that you know how to create a hook, let’s make more through the exercises listed below.
Feel free to ask staff for assistance if you get stuck.

Exercises:

1. Can you figure out how to make a hook which prints out the surface that Lego Mario is
currently standing on? Hint: looking at the _call_tile_hooks function in the

mario.py file may prove to be helpful.

2. Can you make a hook which prints out the values returned from the accelerometer in the
form “(X, Y, Z): (<x>, <y>, <z>)”? Hint: looking at the

_call_accelerometer_hooks function in the mario.py file may prove to be

helpful.
3. Expand the hook you just wrote by including how Lego Mario is moving (i.e. is Lego

Mario face down? Face up? Upside down? tilting? And in which direction? Use the
worksheet you filled in earlier as a reference).

It’s important you understand how Lego Mario works as in the next session (the last one of this
series) you will be tasked with a small project which makes use of the various sensors.

Summary

In this session we continued with the LEGO® Super Mario™ series and took a closer look at the
data the interactive figurine generates. We used the pyLegoMario Python library to connect via
Bluetooth to Lego Mario so that we could read the generated data. Once we knew how to access
the data we created hooks which allow us to extend the functionality of code without modifying
the original. The hooks we created meant every time a pants, tile or accelerometer event

Au Reikura
School of Computing and Mathematical Sciences

 13

occurred, the corresponding function would be executed. Next week, we take what we have
learnt here and use it in a few small (but fun!) projects.

Useful Resources

 W3Schools Python Tutorials: https://www.w3schools.com/python/

 PyLegoMario GitHub Repository: https://github.com/Jackomatrus/pyLegoMario

 Asynchronous Programming: A Beginner’s Guide:
https://www.bmc.com/blogs/asynchronous-programming/

 What is Async/Await in Python: https://superfastpython.com/async-await-python/

 What is Hook (Programming): https://startup-house.com/inventory/hook

 How annotations are used in Python: https://www.educative.io/answers/how-annotations-
are-used-in-python

