

DEPARTMENT OF

COMPUTER SCIENCE
Te Tari Rorohiko

2025

Contributors

J. Turner

V. Moxham-Bettridge

B. Jones

J. Kasmara

© 2025 University of Waikato. All rights reserved. No part of this book may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without prior consent of the Department of
Computer Science, University of Waikato.
The course material may be used only for the University’s educational purposes. It includes extracts of copyright
works copied under copyright licences. You may not copy or distribute any part of this material to any other person,
and may print from it only for your own use. You may not make a further copy for any other purpose. Failure to
comply with the terms of this warning may expose you to legal action for copyright infringement and/or disciplinary
action by the University.

Au Reikura
School of Computing and Mathematical Sciences

 3

LEGO MARIO: TANGIBLE INTERACTIONS

The purpose of the previous 2 sessions in this series have been to familiarise you with LEGO®
Super Mario™ and how it works. In this session we take what you have learnt about the sensors
and the data they generate and apply it to a small project!

Refresher

As a reminder of how hooks work, as well as the accelerometer data available, we will create a
simple program that converts accelerometer values into a direction.

With the PyLegoMario module, hooks can be added when the Mario object is created, or at a
later time. To get started, create a new file and type in the code shown in figure 43. The hook
format is defined by the module; it will have the Mario object that trigged the hook, and the
accelerometer’s x, y, and z values, which we can then use.

Figure 43: The Code for Adding a Hook

Now that we have a hook added to a Mario object, we can run this Python file. Remember that
every change in the accelerometer’s values will cause the hook to run, which can result in many
things being printed to your terminal.

This isn’t very useful at the moment, so let's turn the x, y, and z values into a direction.
Remember the directions from figure 40. If x is negative, the Mario is leaning to the left, and if
x is positive, the Mario is leaning to the right. If z is negative, the Mario is leaning forwards, and

Au Reikura
School of Computing and Mathematical Sciences

 4

if z is positive, the Mario is leaning backwards. The y direction is the orientation, so we will
ignore this for now. Change the accelerometer hook to match figure 44.

Figure 44: Convert Accelerometer Data to Direction

Snake Jr.

We will now create a very basic version of snake, where we will just move a character around
the console window.

To create a function that runs asynchronously along with the run() loop, we need to define an
async game function, and set that as a task to run (see figure 45). We will move the print
statement from the hook into our new game function. This is why the direction variable was
made globally accessible. You will also notice that direction gets set to the string value “None”
instead of the NoneType, and this is because if we try to use it in our game, it can cause issues
with it not being able to be used. Don’t forget to import the asyncio module!

Au Reikura
School of Computing and Mathematical Sciences

 5

Figure 45: Create Asynchronous Loop

Now we are going to move a character around the terminal window. First, we need variables for
the x and y position, declared outside of the loop so they retain their value. You could also use
an array for this. The next part is updating the position based on the direction but ensuring it
does not go out of bounds (stays within the window, otherwise it will break). Then finally, we
can print a character at a certain position using ANSI escape codes. These are special commands
terminal windows use to do things, like clear the screen, set characters to a certain colour, and
more. The complete code is shown in figure 46.

Figure 46: Character Movement

Au Reikura
School of Computing and Mathematical Sciences

 6

Today’s Exercise

You now have the core of a simple Snake game! Your goal today is to make any kind of single-
player game you like using the knowledge you have gained on using the LEGO® Super Mario™
sensors and hooks. You are free to create whatever you want. Here are some ideas:

 Continue the code to make a full Snake game. You may wish to use the Curses module
for printing to the console.

 Create a Pong game.

 Create a Breakout game.

 Create a two-player game that connects 2 Mario devices.

 Use the PyGame library to create a game with a UI.

On the GitHub repository for the PyLegoMario module, there is an example of turning the Mario
into a controller for the Mario64 video game, by making it appear as an Xbox 360 controller.
There is also an example of using the Mario a controller for the Lego EV3 vehicles. You can
also find inspiration on using PyGame in the repository too.

Summary

In this series of sessions, you have learnt about embedded electronics, and programming with
sensors asynchronously. Today you put all that knowledge together to create a game, using the
Mario devices as controllers. You are now ready to get into the world of IoT, robotics, low
power devices, and game consoles!

Useful Resources

 PyLegoMario GitHub Repository: https://github.com/Jackomatrus/pyLegoMario

 ANSI escape codes:
https://gist.github.com/ConnerWill/d4b6c776b509add763e17f9f113fd25b

 Curses library: https://docs.python.org/3/howto/curses.html

 PyGame libary: https://www.pygame.org/wiki/tutorials

